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Abstract This chapter deals with technical aspects of how USDL service descrip-
tions can be read from and written to different representations for use by humans
and tools. A combination of techniques for representing and exchanging USDL have
been drawn from Model-Driven Engineering and Semantic Web technologies. The
USDL language’s structural definition is specified as a MOF meta-model, but some
modules were originally defined using the OWL language from the Semantic Web
community and translated to the meta-model format. We begin with the important
topic of serializing USDL descriptions into XML, so that they can be exchanged
between editors, repositories, and other tools. The following topic is how USDL
can be made available through the Semantic Web as a network of linked data, con-
nected via URIs. Finally, consideration is given to human-readable representations
of USDL descriptions, and how they can be generated, in large part, from the con-
tents of a stored USDL model.
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14.1 Introduction

The previous part of the book has described the semantics of the USDL language
in terms of its abstract syntax shown as UML class diagrams with natural language
explanations, and examples. This part presents tools and approaches to the creation,
representation and communication of actual service descriptions using a variety of
formats. The class diagrams show the structure of information that the USDL lan-
guage expresses, with classes representing the main concepts we wish to capture
about services, attributes of these classes representing properties of the concepts,
and references between the classes representing links between the concepts. The
underlying specification in terms of which the USDL is defined is the Ecore lan-
guage from the Eclipse Modeling Framework (EMF), which is derived from the
Meta-Object Facility (MOF) [19] — an Object Management Group (OMG) stan-
dard for meta-data definition which shares the same semantics as the UML class
modeling language. MOF and Ecore also use a subset of the graphical language of
UML to provide diagrammatic representations of meta-models. The diagrams do
not show every feature of UML, MOF or Ecore, but the concepts they do show
share the same semantics. Ecore has an XML representation with filenames ending
in .ecore which captures all of the details.

For readers not familiar with EMF, the following comparison with XML may
assist. The Ecore language plays the same role as the XML Schema language for
defining XML schemas — it provides the basic concepts in terms of which object-
oriented models are defined: XML element types are roughly equivalent to classes,
XML attribute types are similar to Ecore classes’ attributes, and XML ref element
types are similar to Ecore references. A document type X is defined by a schema
definition X.xsd, in the same way as a language Y is defined by the Ecore model
(also called a meta-model) Y.ecore.

A schema document (.xsd file) contains element type definitions that constrain
what elements may appear in an XML document that validates against the schema,
in the same way that a meta-model (serialized as an .ecore file) defines what
objects may appear in a model instance (serialized as an .xmi file) that conforms
to the meta-model.

Figure 14.1 shows the modeling hierarchy in the EMF technical space in which
the USDL is defined. It has the Ecore language at the top layer, with its concepts of
packages, classes, attributes and references. The next layer down contains the USDL
meta-model, which identifies concepts about services in terms of Ecore classes,
attributes and references. The lowest layer shows USDL service descriptions ex-
pressed in the USDL language, as instances of the classes defined in the USDL
meta-model.

As you can see, there are two possible instantiations that come as standard within
EMF: Java objects which are instances of Java classes generated according to stan-
dard mappings from the Ecore meta-models; and XMI files, which conform to the
XML Schemas that are also generated from Ecore meta-models. In EMF the XMI
mapping is used to create a default serialization from a set of in-memory Java ob-
jects to an XML document.
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Fig. 14.1: Meta-model hierarchy for USDL.

In addition to the EMF code generators, there is a large developer commu-
nity, both open-source and private, which has extended EMF with myriad tools for
editing, serializing, and transforming models; for storing them in various kinds of
databases; and for creating tools around them. EMF is a plugin for Eclipse, which is
the world’s most widely used Java developer environment, and therefore integrates
the use of Ecore models in Java with hundreds of other frameworks and plugins.

The use of tools which manipulate models to produce textual syntaxes, code, ed-
itors, data stores and other models of various kinds is known generically as Model-
Driven Engineering (MDE). One of the earliest articulations of the concept of mod-
els as first class artifacts in software engineering was through the OMG’s Model
Driven Architecture (MDA) [26], introduced in 2000, which began by suggesting
that abstract models of business functionality could be transformed into running
code through a series of layered transformations: Computation Independent Models
could be augmented by some additional information and transformed into Platform
Independent Models, which could then be transformed using mappings to Platform
Specific Models from which code could easily be derived by (re-)using best-practice
patterns. Although MDA is only being used in this suggested form in a minority of
cases, the basic concept of specifying higher-level abstractions of domain concepts
as meta-models, and then using mappings to different formats, and code-generation
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tools to support the models, rather than writing code, is now well established. The
approaches we call MDE also overlap with technologies from the Domain Specific
Language (DSL) community, in which the concept of the domain language defini-
tion is very close to the abstraction of the meta-model, and many tools bridge the
gap between textual and graphical DSLs and object-oriented models. The storage
and manipulation of object models in programs which are derived from grammars
representing textual syntaxes is now commonplace, and integrates tools designed for
compiler construction, such as parser generators and parse-tree manipulation tools
with other model transformation languages and tools.

Furthermore, there are automated mappings from Ecore to other representational
formats such as non-XML textual languages, as well as Semantic Web languages
such as OWL and RDF. However, it is more valuable in a Semantic Web environ-
ment to use human-guided mappings which match the concepts in the USDL to
those represented in existing vocabularies so that service meta-data from USDL can
be integrated into a larger web of Linked Data.

This chapter shows how model-driven techniques are used to manipulate the
Ecore models of the USDL language in order to create a number of concrete rep-
resentations of USDL service descriptions. This chapter is structured as follows:
Section 14.2 explains the approach used to serialize USDL for interchange between
tools that can place an entire service description into a single XML document, or
can exchange an XML representation of one of the modules of USDL at a time.
The use of the augmented XML framework, viz., the Service Modeling Language
(SML), is also considered for its document cross referencing, packaging and vali-
dation capabilities. This is followed in Section 14.3 by an analysis of the existing
Semantic Web environment for established ontologies and vocabularies with which
the USDL is well aligned. Section 14.3 then describes approaches across several
Semantic Web technologies for representing USDL so that existing Linked Data
approaches to modeling domain semantics can be matched and re-used, and to over-
come some of the limitations of semantic representation in the object-oriented MOF
specification. Finally, Section 14.4 demonstrates the use of template-based query
approaches over EMF models to provide human-readable representations of USDL.

14.2 Serialization of USDL models

The approach used for the serialization of USDL models is based on the XML
Metadata Interchange standard (XMI), which is defined by the Object Management
Group (OMG). A few requirements are introduced that are necessary (or nice to
have) for the goal of creating well-formed XML documents that describe a concrete
USDL model (i.e., a service description). Based on the requirements, two ways of
creating a serialization module for USDL are described. Leveraging XMI, it is pos-
sible to generate XML documents from the USDL models, serving as a concrete
syntax for the USDL’s abstract syntax. Finally, the use of the Service Modeling
Language is considered for its capacity to cross-link models between documents,



14 Representing USDL for Humans and Tools† 363

and to package a set of XML Schema and instance documents into a single XML
file for distribution.

14.2.1 Model Requirements for an XML-based Concrete Syntax

When using XML as a concrete syntax, a number of requirements arise that we will
categorize into two types: technical and structural requirements. Technical require-
ments are necessary for the serialization of our model into a single XML document,
and for the ability to serialize the subset of a service description that pertains to a
particular module. Structural requirements make the concrete syntax simpler and
easier to read.

Technical Requirement 1:

The model to be serialized must define a single root element. The reason is that
XML is a textual representation that is tree-based, whereas Ecore models are graph-
based. From the root, navigation to all other elements that are part of the tree is
possible.

Technical Requirement 2:

Each model class that is not the root element for a module must be contained by
another model class. This implies that there is always a navigable path from the root
element class to all other classes. This path must be available using Ecore contain-
ment references only. XMI already allows for XML path navigation to subclasses
of any class that is already reachable from the root element by containment. Any
class navigable from such subclasses is also transitively considered navigable from
the root class, and its XMI serialization will form a correct nested element set.

Technical Requirement 3:

Non-containment references must be mapped by some textual linking mechanism.
Otherwise already contained XML elements cannot be reused but have to be dupli-
cated which would destroy the well-formed structure of the concrete model instance.

Different XML specifications provide different mechanisms for referencing other
elements, such as XML Schema’s ref mechanism or RDF’s URIref mechanism.
In general, there are three strategies to handle references. The first strategy iden-
tifies XML elements by their location in the XML subtree (often referred to as URI
fragments), the second uses unique characteristics of an XML element such as an
attribute with unique values, and the third introduces dedicated unique identifier
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attributes which are added to the XML element. The first two strategies have one
significant disadvantage: If the identifier changes, the references in the document
are broken. The third strategy on the other hand has no need to change identifiers
even if the document structure or attribute values change. However, the challenge in
using the third strategy is to generate unique identifiers across multiple documents.

Structural Requirement 1:

If a model consists of several modules (or packages in MOF terminology), each
module should define a module root element. This allows for the definition of doc-
uments containing contents from only a single module, e.g., a USDL fragment con-
taining only the pricing model could be serialized and exchanged.

Structural Requirement 2:

Model classes that are referenced (by non-containment references) should be top el-
ements contained directly by the document root. The reason for this requirement is
that referenced elements are reusable: once defined they can be referenced from dif-
ferent parts of the XML document. When enforcing this requirement, the semantics
of the model should be taken into account, i.e., there may be reasons to not strictly
follow this requirement.

Structural Requirement 3:

Imported elements should be part of the serialization model. There is no theoretical
reason for this requirement, because elements that are referenced by URI in other
documents can be located. However, it should be obvious and directly visible which
documents need to be accessed to resolve all references. Unless we define an import
element in the model which maps to an import schema for the document, all refer-
ences will have to be checked and document dependencies calculated. This is why
XML-based specifications such as WSDL and XML Schema introduce dedicated
import elements.

14.2.2 The USDL Serialization Model

To allow the serialization into an XML-based syntax, a few extensions to the abstract
USDL meta-model are needed. These extensions are used to address the above re-
quirements and result in a concrete USDL meta-model.

We introduce two variants for the concrete USDL meta-model: a lightweight
model that fulfills the technical requirements and a full-fledged model that also ful-
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fills the structural requirements. The lightweight version is easily adaptable for tool
builders since it directly builds upon available XMI tools. The full-fledged model
also needs extensions in each module as we explain below.

14.2.2.1 Lightweight USDL Meta-model

Technical Requirement 1 has been addressed by the introduction of an additional
root class in Ecore — the USDL3Document — which has a containment reference
to all other classes either directly or indirectly. This class is in a Serialization Module
which imports the other modules and makes references to classes in other modules.

Fig. 14.2: Excerpt from the USDL meta-model.

Technical Requirement 2 can be met by defining references from the root element
USDL3Document which contain either (i) all non-contained, concrete classes or
(ii) all non-inheriting, non-contained classes.

The definition of the root class and its module can either be achieved manually
or derived automatically by applying a model transformation to the standard USDL
meta-model. Take for example the excerpt from the USDL model shown in Figure
14.2. The model shows the interrelations of a few classes. The ServiceBundle and
the CompositeService classes contain the class Part, whereas the Resource class
is only referenced by Service. CompositeService inherits from Service. Service
andServiceBundle inherit from NetworkProvisionedEntity.

Following the approach (i) above (containing all non-contained, concrete classes),
the classes that need to be contained by the newly introduced root element in this
diagram are Resource, Service, Composite Service and ServiceBundle. Ap-
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Fig. 14.3: Serialization module for the USDL excerpt.

plying the model transformation to the USDL meta-model excerpt results in the
(automatically generated) Serialization module shown in Figure 14.3. The same
model transformation can be applied to all USDL modules to create the lightweight
serialization module for USDL.

Technical Requirement 3 is already addressed by virtue of the choice of the stan-
dard XMI mapping rules (see Section 14.2.4). One advantage of the lightweight
model is apparent: The serialization module can simply be added to the other Ecore
modules without modifying them.

14.2.2.2 Full-fledged USDL Meta-model

A full-fledged approach to USDL Serialization requires changing the standard meta-
model to address the structural requirements as well. In order to meet Structural Re-
quirement 1, a root element for each module is introduced which is used as a con-
tainer for all non-contained classes of a module, e.g., a PricingElements class has
been added to the Pricing Module. Technical Requirement 2 is solved in a slightly
different way than the lightweight model, namely by adding containment references
between the root class USDL3Document and each of the module roots. In addi-
tion, containment references are created between all classes that are not already
reachable via containments from the USDL3Document root class via each module
root class (and thus Structural Requirement 2 is met). For example the PricePlan
class is not reachable from the module root, PricingElements, and therefore we
add a containment reference from it to PricePlan. Consequently, the PricePlan is
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now reachable from the USDL3Document by navigating from USDL3Document
to PricingElements to PricePlan.

Structural Requirement 3 has been addressed by introducing the Import class.
The Import class provides a uri attribute that points to the imported USDL docu-
ment. This convenience class is especially helpful for tools to preload referenced
documents in order to navigate cross-document references.

The full-fledged USDL meta-model has the advantage that structural require-
ments are fulfilled and thus that the readability of the resulting USDL is better due
to a better separation of the different modules inside the XML document (or docu-
ments — if serialized per module). A major disadvantage is that the existing USDL
modules have to be extended with module root elements, such as PriceElements.
Thus, the abstract syntax of USDL has to be made more complex in order to make
the concrete syntax easier to understand.

14.2.3 Serialization Model

The Serialization model that is used for USDL (Version 3, Milestone 5) is a light-
weight one with additional support of an Import mechanism. Figure 14.4 depicts the
Serialization model in that module.

Fig. 14.4: Serialization module for USDL (Milestone 5).
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14.2.4 Mapping the USDL Serialization Model to XML

After defining a Serialization Module — which meets our technical (and structural)
requirements — this model needs to be mapped to XML. The mapping is based on
the default Ecore serialization mechanism which itself is based on XMI. Hence, a
short introduction to XMI follows.

The XML Metadata Interchange (XMI) specification (V2.0 was used for Ecore)
defines a standard for exchanging any type of metadata that is compliant to the
Meta Object Facility (MOF). Ecore has been built to comply to a subset the MOF
standard, and thus satisfies this requirement. XMI defines XML Schema constructs
for the purpose of identification, linking, object type hierarchies, and data typing.
These predefined schema element patterns allow for the serialization of instances
of any MOF-conformant object-oriented meta-model to XML, including standards
such as UML 2.0 and BPMN 2.0.

Table 14.1: Overview of XMI Mapping from Ecore to XML

Ecore XML
Instance of EClass XML Element with xmi:id
Instance of EAttribute of Datatype XML Attribute
Instance of EReference (containment) Nesting XML Elements
Instance of EReference (non-containment) XML Ref Attribute
Inheritance — A is a concrete type Attribute set to “A”

subtype of B in the XMLElement representing “B”

To reduce the effort of building tools on top of USDL, the default XMI mapping
of Ecore to XML has been applied to USDL. A summary of the major parts of
this mapping is shown in Table 14.1. This mapping fulfils Technical Requirement 3
since each generated element has an xmi:id that can be referenced. Listing 14.1
shows an example XMI serialization of a USDL service model instance, as specified
by the Serialization Module and transformed USDL Modules, as documented in the
USDL Version 3 Milestone 5 specification.

Listing 14.1: XMI serialization of a USDL service model instance.
1 <u s d l 3 : USDL3Document xmlns : xmi =” h t t p : / / www. omg . org /XMI” . . . >
2

3 <s e r v i c e s xmi : i d =” S e r v i c e 1 7 8 ” v e r s i o n = ” 1 . 0 ” n a t u r e =” Manual ” . . . >
4

5 <names xmi : i d =” D e s c r i p t i o n 3 8 9 ”
6 v a l u e =” Lead L o g i s t i c s − G e n e r a l F r e i g h t ” t y p e =”name” />
7

8 <p r o v i d e r xmi : i d =” P r o v i d e r 2 5 6 2 ” e n a c t i n g A g e n t =” O r g a n i z a t i o n 4 3 2 ”/>
9

10 </ s e r v i c e s>
11

12 <a g e n t s x s i : t y p e =” f o u n d a t i o n : O r g a n i z a t i o n ” xmi : i d =” O r g a n i z a t i o n 4 3 2”>
13

14 . . .
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15

16 </ a g e n t s>
17

18 </ u s d l 3 : USDL3Document>

The USDL3Document is the root element. It may contain several service de-
scription which are in turn represented by a services element (named after the
containment reference from the USDL3Document class to the Service class). The
services element furthermore has an xmi:id attribute that allows other ele-
ments to reference the services element. The nature of the service is a simple
EAttribute and therefore mapped to an XML attribute. Names are contained by the
Service class and therefore realized by nesting the names element inside it. The
Provider has an enacting agent. This is realized by including an agents element
with type Organization and using the Organization’s xmi:id.

It is common practice for Ecore modelers to apply plural nouns for represent-
ing multi-valued containment references, such as, “services,” but when mapped to
XML, this results in multiple nested elements, each of which is named after the
reference. The resulting XML would read better with singular names — such as
“service,” but this would require the adaptation of the default XMI mapping.

14.2.5 Serialization and Exchange of USDL Models Using SML

The Service Modeling Language (SML) [21], which is a W3C recommendation,
provides some useful tools for representing and exchanging USDL models. SML is
not a domain language itself, i.e., it does not define the domain entities. However,
SML does provide useful constructs for representing complex service descriptions.
In addition, the corresponding SML Interchange Format (SML-IF) [20] provides a
convenient and standardized way to represent and exchange self-contained USDL
models.

14.2.5.1 SML Models

An SML model is a set of interrelated documents that describe a service (or other
domain) model. This set of documents consists of model definition documents and
model instance documents. The model definition documents contain information
about the service (the service model), as well as constraints on the model that must
be satisfied for the service to function properly. The model instance documents con-
tain the data for the modeled instances.

There are two types of model definition documents: schema documents and rule
documents. The model definition documents provide much of the information a
model validator needs to decide whether a given model is valid. Schema documents
define constraints on the structure and content of the instance documents in a model.
SML uses XML Schema as the schema language and defines a set of extensions to
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XML Schema to support references that may cross document boundaries. Rules are
boolean expressions that additionally constrain the structure and content of docu-
ments in a model in ways that may not expressible within a given XML Schema.
SML uses Schematron [13] and XPath [7] for rules. While the rules can be embed-
ded in SML model schema documents, they can also be placed in separate docu-
ments so that the schema documents themselves are not altered.

SML schema documents are defined as a strict superset of XML Schema. All
valid XML Schema documents are valid SML schema documents. SML does de-
fine an extension of XML Schema, namely the SML references. SML references
are used to link from one element in a model to another element in the same model.
The linked elements may reside in separate XML documents at runtime. In addi-
tion, SML references may be constrained to specific elements or element types.
Extending the Ecore default mapping by defining the mapping of non-containment
references to SML references instead of XML Ref attributes enhances the cogni-
tive sufficiency of the USDL model by making the reference endpoint more explicit
while still satisfying Technical Requirement 3. However, it is worth noting that,
as long as the Schema extensions defined by SML are not used, then SML model
documents can still be processed by currently available XML processors.

SML model instance documents are XML documents that together form a ser-
vice’s description (instance). They describe or support the description of the in-
dividual resources that the model portrays and must conform to the structure and
constraints as defined in the model definition documents, as shown in Figure 14.5.

14.2.5.2 SML Interchange Format

The SML-IF specification defines a standard interchange format that preserves the
content and interrelationships among the model documents. It also defines a con-
strained form of model validation to ensure interoperability when specific condi-
tions are met and to increase the likelihood of interoperability in other cases. But, at
a minimum, the SML-IF interchange format provides a well-defined standard for ex-
changing a set of model documents regardless of the validation process. An SML-IF
document packages the set of SML model documents to be interchanged as a single
XML document. Each model document appears as content in either the ‘definitions’
or ‘instances’ subsection of the SML-IF document, depending on whether the model
document in question is a model definition document or a model instance document.
Each model document can be represented in either of two ways, by embedding its
content or by providing a reference to it.

14.2.5.3 USDL Models as SML Models

As mentioned, SML is agnostic of any domain model such as a service description
model. USDL provides such a domain model. As specified previously in this chap-
ter, USDL Version 3 Milestone 5 defines a concrete representation of the USDL
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Fig. 14.5: The SML document structure.

model as an XMI schema and a specific model instance as an XMI document that
validates to that schema. These documents form a valid SML model as described
here and can be packaged into one SML-IF document. Note that in the case of full-
fledged USDL serialization, a serialization may be in a single file, or each module
may be represented in a separate XML document. In the latter case an SML-IF
document provides a convenient way to package multiple documents into one deliv-
erable XML document. The value of SML-IF is that a single USDL model made of
multiple schema and instance documents can easily be passed around as a coherent
whole thus satisfying the requirement of cognitive sufficiency.

The user could also manually expand the model description beyond the USDL
meta-model to formalize specific business rules as SML rule documents. This can
be done without altering the XMI schema for USDL. SML-IF provides a way for
the USDL model to incorporate this additional model definition document. In ad-
dition, SML provides the capability to link references across schema documents
which would assist in the implementation of Structural Requirement 1 and the full-
fledged USDL serialization model by enabling cross document links. However, this
capability would require an SML processor rather than a standard XML processor
and, therefore, this capability comes at an additional cost of implementation.
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14.3 Representing USDL as Linked Data

The W3C defines the Web as “an information space in which the items of interest,
referred to as resources, are identified by global identifiers called Uniform Resource
Identifiers (URI)” [14]. The Web is based on three main aspects, namely the identi-
fication of resources, enabling the interaction between agents (software or humans)
via well-defined protocols, and formats that govern the representation of data and
resources transmitted.

These principles have effectively governed the Web and still maintain the ability
for extension to cope with new kinds of resources, or to enable more complex activ-
ities to be carried out. A good example is the work carried out on the Semantic Web
towards providing machine interpretable semantic descriptions of resources, which
could pave the way for the development of more intelligent agents. Most relevant is
the use of RDF and OWL, which are based on pre-existing Web standards, to define
domain-specific models of concepts in an effective and extensible manner.

The Linked Data principles were suggested3 by Tim Berners-Lee in 2006 as
a means of creating a Web of Data better suited for machine processing. These
principles recommend that one should:

1. use URIs as names for things,
2. use HTTP URIs so that people can look up those names,
3. provide useful information, using the standards (RDF, SPARQL) when someone

looks up a URI,
4. include links to other URIs so that they can discover more things.

Since these principles were proposed we have witnessed an outstanding growth
in terms of data and vocabularies allowing people to freely expose and interlink
large quantities of heterogeneous data. In fact, for raw data that can effectively be
modeled in RDF, Linked Data principles are considered by well cited authors [4] as
the best means for publishing to the Web.

The first principle ensures that resources are uniquely identified. The second prin-
ciple ensures that their identification is such that HTTP can be used for obtaining
information about the resource. The third principle establishes standard technolo-
gies for exposing data in a manner that is suitable for machine processing. Finally,
the fourth principle aims to promote the interlinking of data. The same way hyper-
links connect Web documents into a single global information space, Linked Data
uses hyperlinks to connect data into a single global data space. These links allow
applications to navigate the Web of Data and, since the data is exposed through
HTTP (see principle 2) and represented in some standard format (see principle 3),
machines can obtain it, interpret it, and act accordingly in an automated manner.

USDL was originally modeled in Ecore and integrates a number of different per-
spectives on services (e.g., pricing, technical details, legal aspects, stakeholders in
service provision, etc). In addition, the Pricing and Legal Modules were also mod-
eled ontologically in OWL. In [15] Semantic Web tools are used to create and man-

3 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html
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age instances of pricing plans for billing purposes. In work related to the USDL
Legal and Service Level Modules [3] the German copyright legislation was mod-
eled as an ontology from which licence rights models can be derived to describe the
conditions for use of copyright material provided by a service. In the remainder of
this section we shall thus focus on how all of USDL can adopt linked data principles,
focusing mainly on the representation of USDL in RDF(S), and on the interlinking
with external vocabularies and data sources.

14.3.1 Linked USDL

Creating a linked-data-ready version of USDL involves modeling USDL data and
thus the USDL language (meta-model) itself in RDF(S) [5] or related standards,
such as RDFa [1] and OWL [8]. USDL is composed of a number of modules
some of which started out as Ecore models only, and need to be re-modeled in
RDF(S)/OWL accordingly. Redescribing the whole USDL model again in the form
of ontologies is beyond the scope of this book, so instead we shall focus on the
main design decisions concerning the lightweight semantic representation of USDL
in RDF(S)/OWL. Then some examples targeted at the reuse of existing vocabularies
and instances are considered. Through this exercise it shall be seen not only that ex-
isting vocabularies cover a good part of USDL, but also that modeling USDL in this
manner has a number of benefits from the use of Semantic Web tools and formalisms
(e.g., temporal reasoning) and from compatibility with existing datasets.

14.3.1.1 Integrating USDL in the Web of Data Through Reuse

The fourth Linked Data principle is to include links to other data sources from the
Web. These links are an essential means of generating a Web of Data as opposed
to disconnected silos. Linked data simplifies data integration and interpretation, as
well as enabling the discovery of related data that is not part of a USDL service
description.

Most often there are three kinds of links contemplated [9]:

Relationship Links whereby entities from a data source are linked to entities from
other data sources through relationships. For instance, Service A stored in a
USDL repository can be described as being provided by Company C defined
in an external Companies Catalogue. This type of link enables the reuse of data
and establishes links across datasets.

Identity Links which indicate that two URIs refer to the same entity. This allows
us to state, for instance, that Company C from the previous catalogue is actually
the same as Company X, rated by customers in a certain social Web site. By
means of these links, machines can incorporate different views about the same
entity based on data coming from diverse sources.
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Vocabulary Links which are established between entities and the vocabularies
used to define them, thus allow machines to retrieve the definitions and interpret
them. For instance, knowing that Service A is a ServiceBundle informs us that it
has other Services as part of it. These links also allow us to indicate relationships
(e.g., equivalence, subsumption) between concepts, and re-use relationships de-
fined in different vocabularies. This helps integrate data from diverse datasets.

A fundamental activity in adapting USDL for the Web of Data therefore concerns
the analysis of existing vocabularies and datasets, in order to i) identify reusable
vocabularies to avoid reinventing the wheel and promote reuse and integration; and
ii) identify possible relationships with USDL concepts and USDL data to support
navigation across datasets and to simplify data integration.

14.3.2 Design Decisions

In this section we introduce some of the main decisions that have been adopted
while creating Linked USDL. We first introduce general modeling decisions and we
then cover choices made concerning capturing information of particular kinds, such
as geospatial and temporal.

14.3.2.1 Classifications and SKOS Schemes

The main purpose of the USDL specification is to provide a schema, or type sys-
tem, which defines the contents and structure of concrete service descriptions, e.g.,
Service A, its kind, e.g., Service, and a certain categorization of the Service kind,
e.g., an Automated Service. When defined in terms of ontologies the USDL Ecore
model could be replicated using sub-classing and meta-modeling, however, the use
of a hierarchy of classes essentially establishes explicitly and a priori the subclasses
available. Some parts of the model, however, consist of a set of enumerated values
which act as classification categories, and are not expressed as class hierarchies.

The conceptual distinction introduced by a hierarchy of classes is sometimes ap-
propriate as is the case for instance when capturing the relationship between Service
and Composite Service, in which the latter has a grouping constraint which makes
no sense for Services in general. However, in the Participants module, there are
many different subtypes of Role, including BusinessOwner, Provider and Stake-
holder, which do not introduce any extra data values or structural constraints. We
consider that these subtypes would be better expressed as simple categories.

As a general decision for Linked USDL, we have captured the relationship be-
tween concepts via subsumption relationships whenever there was a structural and
semantic difference like in the case of Service and CompositeService. For cases
like the nature of services which are represented as an enumeration of values in
Ecore, we use Simple Knowledge Organization System (SKOS) [18] schemes for
defining the different categories. SKOS is a common lightweight data model rep-
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resented in RDF, which supports the capture of knowledge organization systems
such as classification schemes and taxonomies. Using SKOS, categorizations can
be represented in a machine processable manner. We can easily integrate different
perspectives simply by changing the definition of the concept categorized by means
of a property whose range is skos:Concept. In cases where the USDL specification
uses subclassing to introduce categories, such as the Role example above, we can
also use SKOS, and apply simple taxonomies to the concept of agents, rather than
having a fixed set of subsumed concepts. Indeed, this mechanism does not prevent
users of USDL from providing their own vertical domain-specific categorizations
through subsumption if they wish to.

14.3.2.2 Types as Properties

The USDL specification defines some kinds of things using a property indicating
the type (e.g., dependencyType) and others by using a hierarchy of concepts (see
for instance the different Roles above). In RDF(S) both these approaches could
be best modeled using several properties, possibly in a hierarchy. For example, in
the case of Dependency and DependencyType, where the relationship is binary,
RDF properties are the natural choice as they allow capture of relationships be-
tween the properties where necessary. In this case we have therefore modeled all
the DependencyTypes as properties, we have defined their range accordingly, and
we have dropped the concept DependencyTarget since it becomes redundant with
this modeling approach. We have thus defined a top level property dependsOn and
a number of sub-properties including requires, includes, mirrors, etc.

14.3.2.3 Partonomy

Part-whole relations are very common structuring primitives of the universe, and
indeed they are represented in the USDL Ecore model by containment refer-
ences (black diamonds in the visual representation). For example, ServiceBundle
and CompositeService have a number of constituent parts which can be either
AbstractServices or NetworkProvisionedEntities. The existence of a part or
parts in the model can be specified as a cardinality, or range of numbers, which
if the lower bound is zero is optional, or if the lower bound is some other num-
ber, then that number of parts is mandatory. In the case of CompositeServices the
Ecore has no way of directly specifying the CompositionType, and so an enumer-
ated value in an attribute of Services specifies whether the sub-services are data
dependent, ordered, or just an aggregation.

RDFS and OWL do not have specific construct for modeling part-whole relations
but there are however a number of general purpose proposals for capturing these.
The reader is referred to [23] and [24]. For the purposes of USDL we adopted the
latter as it helps define both direct and transitive relations. We thus include has-
PartTransitive as a transitive relation and hasPart, a sub-property of hasPart-
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Transitive, as a normal property. Doing so allows us to simply capture the hasPart
relations and if necessary be able to deduce the existence of transitive containment
relationships automatically through reasoning over hasPartTransitive.

Additionally, as indicated earlier, USDL constrains the cardinality of parts, with
the most common being single-valued, either mandatory or optional. These dif-
ferent kinds are captured through a hierarchy of properties refining hasPart and
hasPartTransitive respectively. Notably we have included hasOptionalPart and
hasOptionalPartTransitive as well as hasMandatoryPartTransitive and has-
MandatoryPartTransitive. The current version does not insert the inverse relation
isPartOf, but, should it be necessary, this would be an easy addition.

14.3.2.4 Agents and Roles

Given that the provisioning of services necessarily involves a number of individu-
als or organizations taking part, USDL provides a number of classes and relations
covering this. In particular, Agent represents all the entities that can take active part
in the provisioning of a Service. USDL identifies Organization, NaturalPerson,
and ResourceAgent as the main kinds of Agents. This term appears in a number
of vocabularies, notably in Dublin Core,4 and FOAF [6] to name the main ones. The
notion of Agent also concerns organizations which are covered in other vocabular-
ies, for example by gr:BusinessEntity in GoodRelations [10].

Closely related to the notion of Agent, USDL includes the notion of Role. Role
serves as the super type of all concrete USDL classes that represent roles found in
a service network (e.g., service provider). Agents participating in the provisioning
and delivery of a service perform distinct functions, which define their Role. Roles
may either be bound to a concrete Agent or may be used as placeholders. The
latter is necessary if the Service is in a stage where some Agents are yet to be
determined. For example, a service description may specify that there needs to be a
B2B gateway in order to deliver the service to a consumer. Which gateway provider
will be chosen, however, depends on the message/interface standards supported by
a consumer and the consumer’s preferences.

In order to maximize reuse and integration across vocabularies we have adopted
Reynolds’ organization ontology [25], which covers all the core notions, provides
basic modeling constructs for Roles and is already integrated with existing vo-
cabularies such as FOAF and GoodRelations. The main design decisions in this
ontology are i) capturing the relationship between Agents and Roles played in
an organization through an n-ary relationship represented by the intermediate class
Membership, and ii) integration with GoodRelations, FOAF and the vCard vo-
cabulary [12]. By means of these alignments we enable the re-use of many FOAF
profiles, GoodRelations descriptions, and other existing Web data.

4 http://dublincore.org/

http://dublincore.org/
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14.3.2.5 Geospatial Modeling

One aspect of the USDL Foundation module concerns location-related entities and
relationships. In particular USDL specifies a super type for all location related en-
tities, namely Location, and the subtypes PhysicalLocation, GeographicalPoint,
PhysicalAddress, AdministrativeArea, and many others.

There has been a considerable amount of work devoted to creating ontologies
and services in this area. Currently, perhaps the most reused vocabulary for geo-
graphic concepts is the W3C Basic Geo vocabulary, which facilitates the capture
of GeographicalPoints on the basis of their latitude, longitude and altitude. In
addition to this effort, the W3C Geo Incubator Group also devoted some effort to
creating a simple and reusable vocabulary [16] for capturing some basic geometry
relations, which we have adopted in Linked USDL.

There is also a range of complementary vocabularies, data sources, and services
available on the Web with which it would be interesting to integrate for data re-
use. It is worth noting the work by several organizations: firstly, the UK Ordnance
Survey5 as part of the data.gov.uk initiative for the public release of a large quantity
of governmental data in the UK; the site Geonames.org, which comes with a large
knowledge base of locations and services for accessing it; and the geospatial data
set authored by the FAO.6

14.3.2.6 Temporal Modeling and Reasoning

USDL includes quite a few classes for representing time, including Time Instant,
Time Interval, etc. Time representation and reasoning has been addressed quite
often by researchers. Indeed, Semantic Web researchers already have several works
on time representation. In particular, perhaps the most popular for Linked Data is
OWL Time [11] which is hosted by W3C.

Time Ontology defines temporal entities and temporal relationships based on
James Allen’s interval temporal algebra [2]. It therefore identifies Instants, defines
Intervals on the basis of beginning and end Instants and includes the typical tem-
poral relationships between Instants and between Intervals (e.g., before, during,
etc). Linked USDL supports the capture of most of the temporal aspects of USDL
using OWL Time, and additionally supports the implementation of Allen’s interval
temporal algebra for reasoning about intervals and instants. Some issues like the pre-
cision of OWL Time (currently limited to seconds) and notions such as Recurrent
Time and Time Pattern still need to be addressed.

5 http://www.ordnancesurvey.co.uk/
6 http://www.fao.org/countryprofiles/geoinfo.asp?lang=en

http://www.ordnancesurvey.co.uk/
http://www.fao.org/countryprofiles/geoinfo.asp?lang=en
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14.3.3 Services and Service Vocabularies

Modeling the central notion of Service in USDL with Linked Data did not require
any particular decisions other than those mentioned above. However, we carefully
reviewed the state of the art in service ontologies and vocabularies in order to iden-
tify the main alignments to be addressed. The main vocabularies used can be di-
vided into those that address business aspects of services, such as e3Service [27]
and GoodRelations, and those that tackle the technical aspects of services, for ex-
ample, OWL-S [17], WSMO-Lite [28], and the Minimal Service Model [22].

In the current version of Linked USDL, we have performed the following align-
ments with GoodRelations since it is the most widely used vocabulary for (business)
services on the Web:

• AbstractService is a subclass of gr:Product Or Service Model since it provides
prototypical definitions of Services.

• Service and CompositeService are subclasses of gr:Product Or Services Some
Instances Placeholder as they both identify a placeholder for instances of a ser-
vice.

• The inter-service relationship enhances is equivalent to gr:addOn.

Possible additional alignments could be carried out with the e3 family of ontolo-
gies. However, at this stage these ontologies are not offered publicly on the Web in
a resolvable manner which is a requirement for Linked Data.

14.3.4 Summary of USDL as Linked Data

This section has outlined the approach to mapping USDL to existing Linked Data
and the Semantic Web resources. The structural specification of the USDL meta-
model replicates a lot of vocabularies and relations specified in ontologies, for which
there are meaningful and interlinked instances available on the Web through Linked
Data. In fact the original form of some parts of USDL, notably the Pricing and Legal
modules, were as OWL specifications, to facilitate the use of existing tools to cre-
ate and manipulate service descriptions. By drawing equivalences between classes,
attributes and relationships in the USDL specification with existing vocabularies,
relations, and stores of data in the Linked Data Web, we can re-use both common
concepts and instances of these which already exist, and use a broad range of tools
for reasoning about the contents of USDL service descriptions.

14.4 USDL Documentation Generation using USDL-Doc

USDL service descriptions are a convenient way to capture various aspects of a ser-
vice (e.g., technical, legal or operational aspects) in a structured manner which al-
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lows for further automatic processing. However, raw formats embedding structuring
tags (e.g., XMI) typically fall short of providing a decent human-readable descrip-
tion. Therefore, we have implemented the USDL-Doc tool capable of transforming
USDL service descriptions into HTML or PDF documents.

14.4.1 USDL-Doc Architecture

The USDL-Doc tool is a simplistic but powerful USDL editor add-on dedicated to
mapping existing USDL service descriptions, stored as EMF models in XMI for-
mat, to HTML or PDF documents. Generated HTML/PDF documents may serve as
service detail pages exhibited on the service marketplace, developer documentation,
etc.

USDL Files (in 
XMI Format) 

USDL-Doc
HTML/PDF 

Representation

Fig. 14.6: Document Generation Workflow.

The document generation process is fully automated and follows the workflow
depicted in Figure 14.6. Existing USDL service descriptions persisted in the XMI
format are processed by the USDL-Doc tool which eventually produces HTML or
PDF files.

USDL Workbench

USDL Metamodel

USDL Model 
Repository

USDL Editor

USDL-Doc Component

Template 
Repository

Generator Engine

Storage Component

Network Share

Local File System

InputDefinesCreates / Modifies

Fig. 14.7: Document Generation Platform Architecture.
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In order to provide a fully automated workflow, the architecture illustrated in
Figure 14.7 was devised. Essentially, there are three major building blocks: (i) the
USDL workbench, (ii) the USDL-Doc component and (iii) the storage component.
The USDL workbench is used by the USDL designer when creating and revising
USDL descriptions by means of the USDL editor. The USDL editor creates USDL
models which are compliant to the USDL meta-model. In essence, the USDL meta-
model provides a fixed language vocabulary which can be combined to form arbi-
trary USDL models. Those models are stored in a dedicated USDL model repository
which may be implemented in any form from a complex shared repository to a folder
of XMI files on the local file system.

After USDL services are completely described, the USDL-Doc component may
be triggered to produce self-contained HTML or PDF documents. The USDL-Doc
component derives the documents taking into account the USDL service description
instance itself as well as the associated USDL meta-model. Therefore, the generator
engine — having access to the model and meta-model — can query the model in a
declarative style. For example, a declarative query could ask for all natural persons
belonging to a specific organization where the classes NaturalPerson and Organi-
zation are part of the USDL meta-model, and therefore nouns in language vocabu-
lary implied by the meta-model. The template language to express these declarative
queries is the Xpand language. Besides specifying dynamic queries, Xpand tem-
plates can also include static code blocks (e.g., HTML code). Hence, Xpand serves
as a flexible code generation language targeting any kind of textual generated code
(e.g., HTML, Java, C). The Xpand template language, together with the Xpand edi-
tor, is bundled in the openArchitectureWare (oAW) framework that also provides a
generator engine executing the Xpand templates. In summary, the USDL-Doc com-
ponent leverages the oAW template language Xpand and the oAW text generation
engine to transform USDL models into HTML or PDF files.

These generated files are consequently transferred to the storage component. The
storage component may put files into a variety of configured storage locations (in-
cluding the file system, network shares and databases). Thus, generated documents
can easily be shared and consumed.

14.4.2 HTML Generation Example using USDL-Doc

The following example will expose the technical details of the documentation gen-
eration workflow. Therefore, we have chosen a minimal example that illustrates all
relevant aspects.

Let’s assume we want to model a new organization and all of its representatives.
The USDL meta-model already provides concepts representing people and organi-
zations and their properties and relationships. Figure 14.8 shows a small fragment
of the USDL meta-model (residing in the Participant module) depicting the classes
Organization, NaturalPerson and the reference representatives. Consequently,
an arbitrary USDL editor may instantiate these classes to create an object instance
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Fig. 14.8: Fragment of the USDL meta-model.

representing a new organization, its properties, and objects representing its associ-
ated people. Figure 14.9 shows such a USDL editor where the organization Lead
Logistics (cf. running example in Section 8.7) is established and multiple natural
persons are the associated representatives.

Fig. 14.9: USDL Example Model.

In order to advertise the service specified in USDL, we can deploy the service
description we have created in the editor to a broker of services in a service market-
place in XMI format. We also might want to offer the information about the service
on a Web page to inform potential customers. Therefore, we initiate an USDL-to-
HTML conversion by invoking the USDL-Doc tool. The tool processes the USDL
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service description file, along with the USDL meta-model, and uses the Xpand tem-
plate to produce a human-readable representation.

C:\Users\D047351\Desktop\usdl_book\xpand_template.txt Donnerstag, 7. Juli 2011 09:35

«IMPORT usdl»
...
«DEFINE expandOrganization FOR Organization»

<html>
<body>
<div>
<p>organization.name</p>
<p>organization.legalForm</p>
<p>organization.numberOfEmployees</p>
<p>organization.yearOfFounding</p>
</div>
«EXPAND expandNaturalPerson FOREACH representatives»
</body>
</html>

«ENDDEFINE»

«DEFINE expandNaturalPerson FOR NaturalPerson»
<div>
<p>naturalPerson.firstName</p>
<p>naturalPerson.lastName</p>
<p>naturalPerson.title</p>
</div>

«ENDDEFINE»
...

-1-

Fig. 14.10: Xpand Code Generation Template.

An example Xpand template is shown in figure 14.10. It defines the rules (e.g.,
expandOrganization, expandNaturalPerson) for how to map USDL
model elements to HTML code. While the bold black font denotes dynamic code
generation, the lighter font expresses static HTML code. To have a means to access
the USDL model elements, the template has to declare the available types by import-
ing the USDL meta-model. Once the generator engine is aware of the USDL types,
various typed rules might be defined. In the example in Figure 14.10 there are two
rules specified: expandOrganization and expandNaturalPerson. These
rules are applied to all organizations and all natural persons defined in the USDL
model. The expandOrganization rule actually creates a new HTML file and
prints the organization properties to a div-block. Moreover, within the expandOrga-
nization rule an expandNaturalPerson rule is called creating a dedicated div-
block for each person. Note that Xpand language is capable of (i) defining declara-
tive rules for specific types, (ii) accessing element properties using the dot-operator
and (iii) navigating through the model to discover linked objects via references (e.g.,
representatives).

Finally, the generator engine processing the Xpand template creates an HTML
page like the one depicted in Figure 14.11. The illustrated HTML generation is also
feasible for PDF documents. It merely requires a PDF-specific Xpand template.
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Fig. 14.11: Generated HTML Page.

14.4.3 Summary of USDL-Doc

In this section, we have demonstrated the USDL-Doc tool which transforms USDL
service descriptions into HTML or PDF documents. The resulting documents may
address various needs of service providers such as providing developer documenta-
tion or marketing material.

14.5 Conclusion

This chapter has explained how tools can use the USDL meta-model to make repre-
sentations of concrete service descriptions for use by humans and tools.
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Firstly, we can see that additional meta-model machinery is needed to allow tree-
based textual serialization of the USDL’s Ecore models designed for describing the
structure and constraints of a service description. The main purpose is for model
interchange between tools, but human readability is also considered. A simple struc-
tural containment is introduced to allow tools using the XMI specification to create
valid XML documents for whole service descriptions, and for fragments from par-
ticular modules. However, an additional class for an import mechanism are also
used to facilitate the easy tracing of the documents in which parts of a USDL model
are located. The use of SML is and its interchange format SML-IF are also dis-
cussed. This framework facilitates the packaging together of a coherent set of XML
Schema and instance documents, the cross-linking of elements between these doc-
uments, and the potential to validate additional constraints that cannot be expressed
via XMI.

The integration of USDL service descriptions within existing vocabularies and
ontologies in the Semantic Web space has been explored in Section 14.3. The tech-
nologies that make up the Semantic Web have more flexible kinds of relationships
between concepts than the minimal object-oriented typing of the MOF, and some
of these are considered to maximize the ability to match concepts in USDL within
a larger Linked Data ecosystem. The other idea put forward is that an initial effort
to match the concepts in the USDL meta-model with similar concepts in existing
ontologies will allow the USDL service descriptions available in a Semantic Web
context to be linked across domains such as Agents and Geospatial data, and to be
manipulated by a range of reasoning tools.

Finally, we consider the use of USDL-Doc tools which use the USDL meta-
model in concert with service description instances to format USDL data for human
comprehension and navigation.
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